

AS2Doc Documentation
Edition: December 2004
Version: 1.0.5
http://www.as2doc.com

Copyright 2004 © Mirell Development. All rights reserved.

http://www.as2doc.com/

Preface 2

AS2Doc 1.0

Copyright © 2004 by:

Mirell Development
Heinrich-Barth-Str.1
D-20146 Hamburg
Germany
http://www.mirell.de

All rights reserved.

Mirell and AS2Doc are either registered trademarks or trademarks of Mirell Development.

Microsoft®, Microsoft® Word and Windows are either registered trademarks or trademarks of
Microsoft Corporation.

Macromedia®, Macromedia® Flash® are either registered or trademarks of Macromedia, Inc.

All other brand and product names may be trademarks or registered trademarks of their
respective holders.

This document should provide information about the how to work with the various
features AS2Doc has to offer.

It guides through the installation and configuration, explains user interface behavior,
how to write comments within your code and gives help on the generation of various
output formats AS2Doc can produce.

The appendix contains quick help on problems and frequently asked questions (FAQ).

Copyright 2004 © Mirell Development. All rights reserved.

http://www.mirell.de/

AS2Doc 1. Installation 3

1. Installation
This chapter explains how to install AS2Doc on your target computer and how to register it for
initial use.

1.1 General Installation
To install AS2Doc:

1. Double-Click the AS2Doc setup installer
2. Follow the onscreen instructions. The installation program prompts you to enter the

required information.
3. Once the installation program is finished you can start AS2Doc using the start menu and

continue with the product registration.

The installation process is the same if you are upgrading to a new version unless it is explicitly
noted that you have to uninstall a prior version within the installation program.

1.2 Product Registration
Upon ordering you have received a Product Key and a Serial Key.

If you start up AS2Doc for the first time you will have to enter the Username you have
purchased your license with and both keys into the appropriate fields in the form.

Click on the “Register” button once finished to finally unlock AS2Doc and start working with your
program.

AS2Doc can not be used before it is successfully unlocked.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 2. Getting Started 4

1.3 System Requirements
Before installing AS2Doc, make sure your computer is equipped with the following hardware and
software.

Microsoft® Windows

- Microsoft® Windows Millennium Edition, Windows NT® 4.0 with Service Pack 6, Windows 2000
with Service Pack 2, Windows XP Professional or Home Edition, Windows XP Tablet PC Edition
- 300 Mhz or higher
- 64 MB of RAM (128 MB recommended)
- Disk space to cover AS2Doc (around 1 MB) and generated Documentation
- Minimum 800x600 pixel resolution
- Internet Explorer 4 or higher
- MSXML Version 3 or higher (automatically installed with Internet Explorer)

2. Getting Started
This chapter intends to give a short and basic view upon the inner processes AS2Doc is using in
order to produce your documentation to understand the various options you have on the way to
your final documentation. A short tutorial introduces a quick “ready-to-go” example.

2.1 Introduction
AS2Doc is a generator for API (Application Programming Interface) documentation which is
automatically derived from the source code of ActionScript 2.0 based classes (.as) and comments
contained within.

AS2Doc offers a GUI (Graphical User Interface) to configure various options of the generation
process but also supports automated execution using a CLI (Command Line Interface), too.

AS2Doc was inspired by the popular tool “JavaDoc ™” and contains many approaches similar to it
especially in the way of commenting the source code.

2.2 How AS2Doc works
AS2Doc works in three steps:

Step 1:

AS2Doc reads your source files from a specified source file or directory.
Internally a tree of all classes and corresponding associations is created.

Step 2:

AS2Doc creates a XML file based on your configuration you set for the generation process.

Step 3:

AS2Doc takes the XML file from Step 2 and transforms it using one of the various AS2Doc Styles
(XSL Stylesheets) into the output format you have selected.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 2. Getting Started 5

2.3 A simple tutorial
This simple tutorial will show you the simple steps to create HTML documentation for a directory
which contains a couple of AS 2.0 based classes (.as).

1. Start AS2Doc (register the product if needed, See 1.2 Product Registration)
2. Enter a title for your project on the first screen and a small description. You can leave the

default entries if you simply want to try the features at this moment.

3. Click on the “Source” tabulator to open up the source settings.
4. Click on the button “Browse” and select the directory containing your classes and click

“OK” within the dialog.
5. AS2Doc will list all classes and interfaces it will find within any (.as) source code files in

the directory you selected as well as it’s subdirectories.

6. You can (de)select individual classes or whole packages using the checkboxes next to a
class entry or using the popup menu which appears if you click the right mouse button.

7. Click on the “Output” tabulator to configure the destination settings.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 3. User Interface 6

8. Click on the “Browse” button and select a directory where your generated documentation
should be saved. Any prior generated files will be overwritten.

9. Make sure you select the “Default AS2Doc HTML Style” in the list as it will produce our
final HTML documentation.

10. Click on the “Generate” button now. You will see AS2Doc switching to the “Log” page and
display information about the generation process.

11. Once the process is finished you can press the “View” button to show the index page of
the HTML Documentation. It will open your default browser for HTML files.

3. User Interface
This chapter will explain each element of the graphical user interface (GUI) witch can be used to
configure documentation project settings, save/load projects and generate documentation.

The project files saved from within the GUI can be used from the command line interface as a
parameter. (See 4. Command Line)

AS2Doc is divided into five pages and general control buttons at the bottom (About, View,
Generate and Exit).

The following sections explain the individual elements of each page which can be accessed by
clicking on the appropriate tabulator in the top of the program screen.

3.1 Project Settings
The project settings page allows you to define default project title and description and the ability
to load an existing project from or save it on your computer.

The title and description will be used by the output styles if needed to produce title pages,
chapter titles or similar display using the information you entered.

The description offers a small subset of HTML. (See 5.1.2 Description HTML Subset)

Mind that the usage of {@link …} has no context and fully qualified identifiers need to be used if
you link to packages or classes. If you only target to output HTML documentation you can use
full HTML.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 3. User Interface 7

“Load” Button: Opens a dialog to select a valid project file (default .xml extension) to load. Any
existing settings of the current project are removed.

“Save” Button: Opens a dialog to enter a filename to save the project file to.

3.2 Source Settings
The source page selects the classes and/or packages you want to appear in the generated
documentation.

“Browse” Button: Opens a dialog to select a directory or a classfile (.as). After you have closed
the dialog your selection will be searched for valid AS2.0 classes.

Class List: Once you have selected a valid class directory or classfile this component will list
your classes and interfaces it has found listing the package and corresponding contained classes.
By clicking the checkboxes next to an entry, you can define which elements should appear in the
final documentation and which should be skipped. To ease selection you can press the right
mouse button within the list to open a popup menu where you have advanced options for
selection.

“Refresh” Button: Initiates a new search in the directory or classfile specified as the source.
This is useful if your source is a developer directory and an updated of the classlist is required
due to adding new classfiles or moving/renaming existing classfiles for example.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 3. User Interface 8

3.3 Output Settings
The output page controls where the generated documentation will be created and which AS2Doc
Output Style will be used for generation.

“Browse” Button: Opens a dialog where you can select a directory to act as the target for the
generated documentation.

“Stylesheet” List: Upon program startup, AS2Doc reads available Output Styles from a folder
named “styles” within the AS2Doc working directory. The styles it finds are listed here. Click on a
style in order to select it as the active output style for generation.

“Stylesheet Information”: This area shows information and a clickable label to the style
author’s website if available and a short description of the style and output format.

Name Name of the style
Author Author of the style
Version Version of the style
AppVersion Version of AS2Doc the style was build for

“Configure” Button: Depending on the style you selected this button will be shown if the style
supports and further configuration (like custom colors, text replacements, footers etc.). It opens
a dialog where you can configure style dependent options which are saved within your project.
These settings are not discarded if you select a different style.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 3. User Interface 9

3.4 Options
The options page allows configuring style independent settings of the generation process.

“Ignore Tags” List: Check one of the listed block comment tags which will be skipped and not
read from the source files if encountered and completely discarded. Any actions they trigger (e.g.:
@ignore, @exclude) are not processed.

“Generation” Checkboxes:

No Comments All comments including appropriate tags are not read from the source files.

Public Members The default checked option will generate all members with public class
scope.

Private Members Includes members in private scope into the final documentation.

Generate XML only Once generated a XML file will be saved in the output directory which is
usually used by the selected style.

Skip #include Does not resolves the #include compiler directive

Skip Interfaces Any interfaces encountered within the source are not generated to the final
documentation.

Skip Classes Any classes encountered within the source are not generated to the final
documentation.

Period divides comment and description
AS2Doc is strict regarding the separation of a short and a long description of a code element.
Usually any comment without a tag identifier in the form of @tag is regarded as a short
description with a more detailed and long description within the @description tag. Since some
projects we encountered used standard “JavaDoc ™” descriptions which define that the short and
long description is divided by the first period followed by a whitespace character these
descriptions would be combined to a very long short description in the output of AS2Doc.

To enable AS2Doc to automatically divide the descriptions according to this schema check this
option.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 3. User Interface 10

3.5 Log View
The Log page contains a display for log messages generated on errors and during the generation
of your documentation. It will list all files processed and the current status of the generation. A
progress bar beneath the log display will show you the progress of the generation.

“Clear” Button: Clears any log entries within the log display.

3.6 About, View, Generate and Exit Buttons

“About” Button: Show information about the version of AS2Doc you are using

“View” Button: If you have successfully generated documentation this button will be enabled.
Once clicked, it will open your default viewer for the documentation’s main file if available.

“Generate” Button: Click the button to start the generation of the documentation. If AS2Doc is
missing any settings you will be notified to add/configure these and press the button again
afterwards.

“Exit” Button: Quits the application discarding any changes made to the project since last save,

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 4. Command Line 11

4. Command Line
The command line interface allows control over all aspects AS2Doc offers using command line
parameters. This way you can automate the generation in an editor of your choice without using
the GUI or automate generation into multiple output formats or in any other scenario which
makes use of command line parameters.

Command line parameters are separated by a space and marked by a preceding “-“.

If you supply any command line parameter to AS2Doc it will not start in command line interface
mode (CLI).

In order to get an overview of the parameters available open a command prompt and change to
the directory AS2Doc was installed to (Example: “cd c:\Program Files\Mirell\AS2Doc Pro\”), then
start AS2Doc using: “as2doc.exe –help”

4.1 Arguments
General Usage: as2doc.exe [project.xml] [Options]

AS2Doc differs between three modes.

1. You supply a project file only (example: “as2doc.exe myproject.xml”)
2. You supply no project file, only parameters
3. You supply both project file and parameters (example: “as2doc.exe pro.xml –private -

quiet”)

In the last case the parameters override any options set within the project.
In all cases the minimum requirements to start the generation is to specify a valid source and
destination.

[Options] include:

-s <path|file>

Specify a classpath or a single classfile to read. If you specify a classpath, it is searched
recursively for *.as classfiles.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 4. Command Line 12

-d <path>

Specify the directory to generate the documentation to. Files will be overwritten.
Ignored if you specify the –xml parameter since no documentation will be generated besides the
XML file in that case.

-g <pkg|class>

By default, AS2Doc generates all classes found in the source specified by the –s parameter.
The –g parameter is useful if you want to generate specific packages and/or classes out of those
found using the –s parameter. The list of packages and/or classes/interfaces in any combination
should be separated by a space.

To mark a package and all classes within use “my.package.*”
To mark a single class or interface supply the fully qualified identifier “my.package.myclass”

Examples: …“-g com.as2doc.examples.* com.as2doc.AClass”…

- xml <file>

Generates XML based documentation in a single file. The file is usually used by AS2Doc to further
process it using an output style. Any destination specified within the project file or using –d is
discarded.

-style <style.xml>

Specify the full path to the output style to be used for generation.
The default is the “Default AS2Doc HTML Style” if this option is omitted or nothing else was
saved in a project file used. (Example from AS2Doc installation directory to call the RTF style:
“as2doc.exe myproject.xml –style styles/AS2Doc/RTF/style.xsl”)

This parameter can also be used in conjunction with the –styleoptions parameter to display all
advanced options of the specified style.

-run

Automaticly spawn the default viewer once the documentation was generated. Same effect as
the “View” button within the GUI.

-nopublic

By default all members in public scope will be generated. If you don’t want this add the –
nopublic option.

-private

Generates members in private scope if used.

-styleoptions

List all available advanced options of the used style which can be passed on the command line. It
is the equivalent to the “Configure” Dialog in the GUI.

-quiet

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 4. Command Line 13

Disable output of log messages and errors. AS2Doc will be started and generates no output on
the command line.

-@<tag>

Disable parsing of <tag>. (Example to skip all @see block comment tags: “as2doc.exe
myproject.xml -@see”)

Add multiple -@<tag> parameters if you want to ignore multiple tags.

-nocomments

Discards reading any comments including comment tags from the source files.

-skipinclude

Does not process any #include compiler directives.

-skipclasses

Skips all classes found in the source path.

-skipinterfaces

Skips all interfaces found in the source path.

-descatperiod

The short description will end at the first period followed by a whitespace or tab character in the
source file. This mimics “JavaDoc™”-like behavior.

-help

Display a short help and overview of the command line parameters of AS2Doc and the default
AS2Doc output style.

4.2 Examples
Some examples making use of the command line interface of AS2Doc:

1. Generate a standard HTML documentation without specifying a project file:

as2doc.exe –s c:\myproject\classes –d c:\myproject\documentation\html\ -a:title “My Project
API Documentation” –a:description “Description for my project”

2. Generate a RTF documentation from a standard project file specifying to only generate classes
in the root package, ignoring the @example tag and overriding the title from the project file.

as2doc.exe c:\myproject\myproject-doc.xml –g * -@example –a:s “My Project Root Classes
Documentation”

3. Generate a standard HTML documentation without frames, a custom css file, also private
members based on an existing project file.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 14

as2doc.exe c:\myproject\myproject-doc.xml –s:frames false –s:css
c:\myproject\documentation\blue-skin.css –private

5. Documentation Comments
In order to be able to process your source files and recognize certain features AS2Doc will parse
a classfile and its comments for “Documentation Comment Tags” of the form “@tagidentifier”.

Since the “JavaDoc ™” format has become a commonly used documentation standard and its
existing specifications cover it very detailed the following sections will only cover the differences
and additions offered by the comment system used by AS2Doc.

See the “JavaDoc Tool Home Page” for detailed informations:
http://java.sun.com/j2se/javadoc/reference/docs/

5.1 Commenting the Source Code (AS2Doc Additions)
You can include documentation comments ("doc comments") in the source code, ahead of
declarations for any class, interface, method, constructor, field or property (methods specified
using get/set keywords).

A doc comment consists of the characters between the characters /** that begin the comment
and the characters */ that end it. Leading asterisks are allowed on each line and are described
further below. The text in a comment can continue over multiple lines.

/**
 * This is the typical format of a simple documentation comment
 * that spans two lines.
 */

AS2Doc also allows the following variation:

// This is a simple comment spanning
// two lines aswell.
// @description Tags are fully supported

and

Copyright 2004 © Mirell Development. All rights reserved.

http://java.sun.com/j2se/javadoc/reference/docs/

AS2Doc 5. Documentation Comments 15

/*
 This is also a valid comment.
 @description With this description tag being recognized either.
*/

You should conform to the first example provided to have well-formed comments. The alteration
is available to cover some exotic cases.

First Sentence
AS2Doc recognizes the first sentence as the short description which should contain a summary
sentence describing the following code element. It is not preceded by any comment tag
“@<identifier>”. The long description is specified using the “@description” tag.

/**
 * A short description of the code element.
 * @description More detailed long description of the element.
 */

5.1.2 Description HTML Subset
Not all output styles offer full HTML support.

They often (besides the HTML Style) only support a small subset of HTML. In order to maintain
compatible upon the various output formats, you should limit your comments to the following set
of HTML tags:

br, a, b, i, u, table, th, tr, td, code, pre, img

Special notes:

table please use <table cellspacing=”0” cellpadding=”0” border=”0”> in order for
all styles to recognize tables.

th Make use of the th tag for table headings to be recognized by all styles correctly.

code Use this tag to mark a characters as program code, it differs from the pre tag by
being inline with the surrounding text if it does not span multiple lines. Otherwise it has the
same effect as the pre tag.

pre Use this tag to mark a block of program code. The program code within the pre tag
is white-space aware and line breaks are preserved in the output. The program code marked by
the pre tag is shown in a separated block and any preceding or following elements do not appear
on the same line.

Line breaks are not recognized and need to be created by adding the
 HTML tag for a break.

This is different from anything written between <code> and <pre> tags. Line breaks are
preserved and copied the generated documentation. AS2Doc also adds correct indentation.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 16

Some examples:

/**
 * @example This code appears in a separate block preserving indents:
 * <code>
 * var myObject = new Object();
 * myObject.testFunc = function ()
 * {
 * // This will appear intended
 * trace(this.toString());
 * }
 * </code>
 * Within the regular comment you need to use

 * to force a manual line break as in HTML.

 * Any tag, written between <code> tags will be escaped:
 * <code>
 * // This inline code comment will show tags -> , <i> and <u>
 * <?xml version=”1.0”?>
 * </code>
 * The usage of <code> differs if it does not span multiple
 * lines in the comment <code>like this text</code> appears not
 * as a block but still formatted as code and inline of the text.
 */

If you target to only use HTML as an output format, you can use full HTML within the description
including any “style” attributes for richer display of your description text.

The comments also allow the use of inline comment tags {@link …} and {@docRoot}. (See 5.2.2
Inline Tags)

5.2 AS2Doc Tag Reference
AS2Doc parses special tags when they are embedded within a comment.

These tags enable you to generate a complete, well-formatted API from your source code.

The tags start with an "at" sign (@) and are case-sensitive “@<identifier>” -- they must be
typed with the uppercase and lowercase letters as shown.

A tag must start at the beginning of a line (after any leading spaces and an optional asterisk) or
it is treated as normal text.

By convention, tags with the same name are grouped together.
For example, put all @see tags together.

A list of tags currently supported by AS2Doc:

@author
@deprecated
@since
@version
@param
@return
@throws
@see

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 17

{@link}
{@docRoot}

(AS2Doc adds additional tags besides the standard JavaDoc™ based tags)

@description
@example
@ignore
@exclude
@usage

5.2.1 Block Tags
Block Tags can be placed only in the tag section that follows the short description. Form: @tag

@author name

Specify the author of the commented code element. Multiple @author tags are allowed and will
concatenate with a comma “,” in the final output.

Example:
/**
 * @author Mirell Development
 * @author Second Author
 */

@deprecated deprecated-text

Add a comment indicating that this API should no longer be used (even though it may continue
to work). The deprecated-text is moved ahead of the main description, summary pages and
index, placing it in italics and preceding it with a bold warning: "Deprecated".

Example:
/**
 * @deprecated Since Flash 6, see {@link #bProperty}
 */

@usage usage-text

Specify the usage of the commented code element.

Example:
/**
 * @usage <pre>myTest = new CTest(p1[, p2]);</pre>
 */

@since since-text

This tag specifies that this change or feature commented has existed since the software release
specified by since-text. Multiple @author tags are allowed and will concatenate with a comma “,”
in the final output.

Example:
/**
 * @since API 2.3

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 18

 * @since AOP SDK 5.1
 */

@version version-text

This tag is intended to hold the current version number of the software that this code element is
part of. Multiple @author tags are allowed and will concatenate with a comma “,” in the final
output.

Example:
/**
 * @version API 2.5
 */

@ignore

This tag instructs the AS2Doc parser to ignore any comments and tags previously read for this
code element and clear the comment buffer. Use this to avoid certain parts of a comment to be
processed.

Example:
/**
 * This text might include some license information or other
 * data not intended to appear in the documentation or be used
 * as the short description of the following code element.
 * @description Tags are also discarded by the @ignore tag
 *
 * @ignore
 *
 * The preceding text is skipped and this is the short description.
 */

@exclude

If AS2Doc encounters an @exclude tag within a comment the following code element is excluded
from the final documentation.

Note: You can reverse the effect and generate all elements marked with @exclude by configuring
AS2Doc to ignore the @exclude tag.

@description text

This tag contains the detailed long description text of the following code element. Multiple
@description tags are combined into one description in the final documentation.

Example:
/**
 * A short description of the code element.
 * @description The long description of the code element spanning
 * multiple lines and explaining the element in detail.
 */

@param [identifier] description

This tag is only valid in a doc comment of a method or constructor. This includes property write
access methods (“function set myProperty(Value: String) {}”.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 19

The description may span multiple lines. AS2Doc allows the identifier to be skipped if the
following applies: a) @param tag order reflects method parameter order b) All @param tags do
not contain the identifier part.

Example:
/**
 * A short description of the code element.
 * @param Value The new state of the light
 */
public function set LightState(Value: Boolean) {}

/**
 * A short description of the code element.
 * @param Number of options
 * @param Default option value
 * @param Resets options to string specified in <code>b</code>
 * if <code>True</code>.
 */
public function setOptions(a: Number, b: String, c:Boolean) {}

@return description

The tag is only valid in a doc comment of a method or a getter method. (“function get
myProperty(): String”).

The description may span multiple lines. It should describe the return type and the permissible
range of values returned by the method.

Example:
/**
 * @return The combination of the current position
 * and direction within a boundry of 0-100.
 */

@throws class-name description

The class-name is the name of the exception that may be thrown by the method. This tag is valid
only in the doc comment for a method or constructor.

Multiple @throws tags can be used in a given doc comment for the same or different exceptions.

Example:
/**
 * @throws IllegalArgumentError Description of when this error
 * occours.
 */

@see reference

Define a link or text entry that points to reference. A comment may contain any number of @see
tags, which are all grouped under the same heading. The @see tag has three variations; the
third form below is the most common.

For inserting an in-line link within a sentence to a package, class or member, see {@link}.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 20

@see “string”

Add a text entry for string. No link is generated. The string is a book or other reference to
information not available by URL.

Example:
/**
 * @see “Book about this API”
 */

@see label

Adds a link as defined by URL#value. The URL#value is a relative or absolute URL.

Example:
/**
 * @see Class Overview
 */

@see package.class#member label

Add a link, with visible text label, that points to the documentation for the specified name that is
referenced. The label is optional; if omitted, the name appears instead as the visible text,
suitably shortened

Use the label when you want the visible text to be different from the auto-generated visible text.

package.class#member is any valid program element name that is referenced, a package,
class, interface, constructor, method, field or property name, except that the character ahead of
the member name should be a hash character (#). The class represents any class or interface.
The member represents any constructor, method, field or a property. If this name is in the
documented classes, AS2Doc will automatically create a link to it.

label is optional text that is visible as the link's label. The label can contain whitespace. If label
is omitted, then package.class.member will appear suitably shortened relative to the current
class and package.

A space is the delimiter between package.class#member and label.

Example (see tag refers to watch method of class Object):
/**
 * @see Object.watch
 */

Since ActionScript 2.0 does not support overloading this referencing differs from that used by the
“JavaDoc ™”-tool. Following “()” parentheses should not be provided.

This package.class#member name can be either fully-qualified, such as “mx.core.View#draw“ or
not, such as “View#draw” or “#draw”. If less than fully-qualified, AS2Doc searches for it the
same way as during compilation:

- the current class or interface
- any enclosing classes and interfaces, searching closest first
- any superclasses and superinterfaces, searching closest first
- the current package

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 21

- any imported packages, classes and interfaces, searching in the order of the import statement

Several Examples show the resulting output link (context of a class named mx.data.TestClass):
/**
 * @see mx.core.View // mx.core.View
 * @see mx.core.View The view class // The view class
 * @see TextField // TextField
 * @see TextField#getDepth // TextField.getDepth()
 * @see mx.core.ScrollView#draw // mx.core.ScrollView.draw()
 * @see View.DEF_HEIGHT // mx.core.View.DEF_HEIGHT
 * @see TestClass#getValue // getValue()
 * @see #getValue // getValue()
 * @see Home A // Home A
 * @see “Book about an API” // “Book about an API”
 */

5.2.2 Inline Tags
Inline Tags can be placed anywhere within comments of block tags. Inline tags are denoted by
curly braces: {@tag}

/**
 * @description This comment uses an inline tag to link to a
 * different {@link my.package.class class}.
 */

{@docRoot}

The tag represents the relative path to the generated document's (destination) root directory
from any generated document.

It is useful when you want to include a file, such as a copyright page or company logo, which you
want to reference from all generated documents. Linking to the copyright page from the bottom
of each page is common.

The reason this tag is needed is because the generated docs are in hierarchical directories, as
deep as the number of sub-packages. This expression (if default HTML Output Style is used):

would resolve to:

 // for mx/core/View.as

If a style consists of only a single document or multiple documents in the same directory the tag
will be substituted correctly by AS2Doc.

Linking images or HTML pages from documentation generated using the HTML Output Style is
obvious, other styles will translate these references in a Style respective/appropriate way. (The
RTF style for example converts HTML tags to external image references inside the RTF and
links to HTML pages as hyperlinks within the document)

/**
 * @description This comment uses an inline tag to show an image
 * within the text which resides in the root of
 * the documentation directory:

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 5. Documentation Comments 22

 *
 */

{@link package.class#member label}

The tag inserts an in-line link with visible text label that points to the documentation for the
specified package, class or member name of a referenced class.

This tag is very similar to @see -- both require the same references and accept exactly the same
syntax for package.class#member and label.

The main difference is that {@link} generates an in-line link rather than placing the link in the
"See Also" section.

Also, the {@link} tag begins and ends with curly braces to separate it from the rest of the in-line
text. If you need to use "}" inside the label, use the HTML entity notation }

There is no limit to the number of {@link} tags allowed in a sentence.

For example, here is a comment that refers to the unwatch method of the class Object:

/**
 * @description Use the {@link Object#unwatch} method.
 */

We plan to include support for additional inline tags in future updates.

5.3 Example
Class/Interface example:

/**
 * A class representing a window on the screen.
 * @description For example:
 * <code>
 * Window win = new Window(parent);
 * win.show();
 * </code>
 *
 * @author Hei Ho
 * @version 2.4
 * @see de.mirell.math.CQuaternion
 * @see de.mirell.as2.lang.Object
 */
class Window extends BaseWindow {
 ...
}

Field example:
/**
 * The X-coordinate of the component.
 *
 * @see #getLocation
 */
public var x: Number = 1263732;

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 23

Property example:
/**
 * Sets the X-coordinate of the component.
 * @param Value New x-coordinate from 0-100 pixels
 * @see #x
 */
public function set xPosition(Value: Number) {
 ...
}

Constructor and Method example:
/**
 * Returns the character at the specified index.
 * @description An index ranges from <code>0</code>
 * to <code>length() - 1</code>.
 *
 * @param index the index of the desired character.
 * @return the desired character.
 * @throws StringIndexOutOfRangeException
 * if the index is not in the range <code>0</code>
 * to <code>length()-1</code>.
 * @see String#toString
 */
public function charAt(index: Number): Number {
 ...
}

6. AS2Doc Styles
AS2Doc uses output styles to generate your final documentation. These styles are nothing else
than XSL Stylesheets. You should be familiar with XSL if you want to write custom output styles.

You can learn more about XSL at http://www.w3.org/xslt

AS2Doc uses them to process the generated XML Documentation and output your documentation
in the specific output style.

The styles must reside in a subdirectory of the as2doc executable called “styles”.
If you browse your installation directory you should note several default styles bundled with the
AS2Doc distribution.

The following sections will explain the structure and behavior of these styles to allow you to
develop your own custom output formats and give an overview of each bundled style of the
AS2Doc distribution.

6.1 Creating custom Output Styles
An AS2Doc Output Style typically consists of several XSL Stylesheets and optional resource files
needed by the style.

Copyright 2004 © Mirell Development. All rights reserved.

http://www.w3.org/xslt

AS2Doc 6. AS2Doc Styles 24

The files must reside within a subdirectory of the as2doc executable called “styles” followed by a
directory named after the vendor/developer and any further subdirectories like the output format
for example. (Default AS2Doc Style: “styles/AS2Doc/HTML/”

The “styles” subdirectory is searched recursively by AS2Doc on startup for files named “style.xsl”
which marks the main information and output pipeline file for an AS2Doc Style.

This is the only file AS2Doc will recognize and the minimum to allow a style to appear in the
AS2Doc styles list or be used on the command line interface.

In order to understand the idea behind the pipeline file mind the process of generating
documentation:

Read Source Code >> Generate a XML Documentation >> Transform the XML Documentation
using a given Output Style >> Final Document(s)

The “style.xsl” output file contains two main sections and is a valid XML document with special
tags explained in the following style reference and the option to use XSL transformations within
to alter this information.

The first section contains the name, version, AS2Doc version the style was build for, a
description, author information, author homepage and a list of style parameters which can be
configured from AS2Doc.

The second section is a list of <file> tags specifying the “generation pipeline”. Each <file> tag
represents a file copy action or further XSL Translation. This way, further XSL Stylesheets or
resource files (images, css etc.) can be used to create files in the documentation output directory.

AS2Doc reads the “style.xsl” file and translates it with the XML Documentation initially created.
(So the <file> action list can be altered using XSL depending on the documentation AND on the
parameters passed to the “style.xsl” template.)

The resulting file is stored temporary and acts as a list of copy and translation operations
AS2Doc will execute in the order of appearance.

You can easily create custom copies of the default styles and customize them to your needs by
copying them into a new directory within the “styles” folder and start editing instead of starting
from scratch.

The following section explains the structure of the “style.xsl” file.

In future versions AS2Doc will introduce an “as2doc” XML namespace to have advanced
functionality not available with regular XSL including binary file handling and more.

6.1.1 Style Reference
This is the minimum XML Structure required for a valid “style.xsl” pipeline file:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" indent="no" media-type="text/xml" omit-xml-
declaration="no"/>
<xsl:template match="/">
<generation>
 <information>
 <author>Company/Author</author>

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 25

 <version>1.0.0</version>
 <appVersion>1.0.0</appVersion>
 <name>Format Documentation</name>
 <description>Generates Format documentation.</description>
 <url>http://www.as2doc.com</url>
 </information>
</generation>
</xsl:template>

</xsl:stylesheet>

The file is a typical XSL Stylesheet with the XML output method.

It contains one root node <generation>.
The root node can contain nodes with only one <information> and one or more <file> nodes.

Since the file is a valid XSL Stylesheet you can include various transformations in the context of
the raw XML Documentation. (Generate <file> nodes for each class or package, copy resource
images etc.)

1) <information>

The tag contains a collection of tags which supply a data about the output style. The available
tags are:

<author> The name of the author or company creating this style.
<version> The version number of the current style.
<appVersion> The version number of AS2Doc this style was build with. (To detect
incompatible style formats between major new or older versions)
<name> The short name of the style.
<description> [optional] A short description of the style (max 400 characters)
<url> [optional] A hyperlink to the author’s style website.

Style Parameters

AS2Doc supports customization of the style’s behavior using “Style Parameters”. They are
defined in the node named <parameters> within the <information> node and are added to the
resulting XML Documentation with values supplied by the user.

The node contains one or more <parameter> nodes which define the type of the parameter which
can be configured by a user from the command line or the graphical user interface.

Stylesheet parameters are passed on the command-line using -s:<name> <parameter>
In the GUI, parameters can be edited using the style configuration dialog.

<parameter name=”identifier” module=”line|color|bool|text|filename”
description=”Parameter description”/>

The required attributes are:

name Defines the parameter identifier
description A short (max 40 chars) description of the parameter
module Defines the “type” of the parameter. See table below for allowed types.

The default value is specified within the tag context.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 26

The intermediate xml documentation contains these parameters to enable the
stylesheet to lookup these in order to generate dynamic content.

Available standard module attribute values allowed are:

"line" Simple one-line text edit component
"color" A standard color dialog to pick a color from ("000000") (not implemented,
currently same effect as “line”)
"bool" A true/false checkbox
"text" A memo to enter a couple of text lines
"filename" A standard file selection dialog with custom information:

<title>Browse for a textfile...</title>
<filename></filename>
<filter>Actionscript 2.0 Class (*.as)|*.as|All Files (*.*)|*.*</filter>
<defaultext>*.as</defaultext>

<title> Title of the file selection dialog
<filename> Default Filename
<filter> A list defining file types in the dialog separated in the form of

 “description|Filter[description|Filter[…]]"

<defaultext> The default selected filter of those defined in <filter>

Example of parameter nodes:

<parameters>
 <parameter name="noframes" module="bool" description="Omit Frameset in
documentation">false</parameter>
 <parameter name="navbg1" module="line" description="color" />
 <parameter name="footer" module="text" description="Footer Text" />
 <parameter name="css" module="filename" description="Custom CSS File">
 <title>Browse for css file...</title>
 <filename/>
 <filter>Cascading Style Sheet (*.css)|*.css|All Files (*.*)|*.*</filter>
 <defaultext>*.css</defaultext>
 </parameter>
</parameters>

Example command-line call:

as2doc ... -s:footer "Generated on" -s:css c:\styles.css -s:noframes true -s:navbg1 009900

2) <file>

The tag defines a certain action AS2Doc will execute according to its attributes which vary
depending on two cases described below.

A) Copy a file to the target documentation

<file source="as2doc.css" dest="as2doc.css" basedir="style"/>

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 27

This node instructs AS2Doc to copy a file or directory specified by the attribute “source” to the
file or directory specified by the attribute “dest”. The attribute “basedir” has the following
possible options:

style The source is relative to the style’s root folder (location of “style.xsl”)
source The source is relative to the root classpath or directory of the documented class
output The source is relative to the root of the target output directory

Wildcards are also supported. Example to copy any JPG images from a “yourstyle/resources/”
directory to a target directory “images” in the output folder you could use:

<file source="resources/*.jpg" dest="images/" basedir="style"/>

B) Translate XML Documentation with given XSL Style to generate a file in the target
output directory

<file style="index.xsl" dest="index.html" [type=”indexfile”]/>

This node instructs AS2Doc to use the XSL Stylesheet “index.xsl” in the root of the style
directory (location of the “style.xsl” file) and translate it with the XML Documentation and store
the resulting document in the file named by the attribute “dest” in the output directory. The
optional attribute “type” with the value “indexfile” marks the generated file as the “main index”
file for the generated documentation format. This file is automatically opened if a user clicks the
View Button within the AS2Doc GUI or uses the command line “-run” parameter.\

AS2Doc processes the nodes in document order. You can customize the set of <file> nodes
dynamically to your needs using XSL Transformations.

Additionally you can pass dynamic XSL Stylesheet Parameters to each stylesheet to be called
using a <param> node.

The following example will supply an “index.xsl” stylesheet with two XSL Stylesheet Parameters

<file style=”index.xsl” dest=”index.html”>
 <param name=”classes”>true</param>
 <param name=”interfaces”>true</param>
</file>

You can alter the <param> tags using XSL transformations dynamically in order to change passed
parameters.

To use the passed XSL Parameters, the stylesheet “index.xsl” has to have the following additions
as top-level elements:

...
<xsl:param name=”classes”/>
<xsl:param name=”interfaces”/>
...

It would now be possible to access the contents of the classes parameter within an XPath
expression using $classes or $interfaces. It could trigger if only classes, interfaces or both are
output with our style.

Have a look at the standard HTML Output Style pipeline document for a working example in the
“styles/AS2Doc/HTML/styles.xsl” file. It makes use of all the features explained.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 28

Note: This has nothing in common with the <parameters> section within the <information>
node.

6.1.2 A simple style tutorial
This simple tutorial should show you in an example how to create a style which generates a
simple plain text list of all classes and interfaces documented.

1. Create a subdirectory in the “styles” folder: “styles/examples/classlist/”
2. Create a “styles.xsl” file in the above directory with the following contents:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"
indent="no"
media-type="text/xml"
omit-xml-declaration="no"/>
<xsl:template match="/">
<generation>
 <information>
 <author>Your Name</author>
 <version>1.0.0</version>
 <appVersion>1.0.0</appVersion>
 <name>Classlist Textfile</name>
 <description>This style generates a simple text file which contains a
list of all classes and interfaces.</description>
 </information>
 <file style="classlist.xsl" dest="classlist.txt" type="indexfile"/>
</generation>
</xsl:template>
</xsl:stylesheet>

The “style.xsl” acts as the main pipeline file for our output. According to the reference in the
preceding sections you can see that it contains basic information about our style and defines on
file for generation using the <file> node.

The file it generates will be named “classlist.txt” and the attribute “type” indicates that it will be
the index of our documentation output style thus be opened if the user clicks on the GUI View
Button or uses the “-run” command line parameter along with our style.

The <file> node also specifies an attribute “style” and points to a XSL Stylesheet to use in order
to generate the “classlist.txt” output file. This means that AS2Doc will take the XML
Documentation and transform it using our “classlist.xsl” file and store the result in the
“classlist.txt” file.

3. Within the directory of this style place a second file named “classlist.xsl” with the following
contents:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text"
encoding="ASCII"
media-type="text/plain"/>

<xsl:template match="/">
<xsl:for-each select="/documentation/package">

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 29

<xsl:for-each select="./classes/*[self::class|self::interface]">
<xsl:if test="./@ns!=''"><xsl:value-of select="./@ns"/>.</xsl:if><xsl:value-of
select="./@id"/><xsl:value-of select="'
'"/>
</xsl:for-each>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

The raw XML Documentation is being transformed with this stylesheet as we defined this
operation within the “style.xsl” file’s <file> node.

You see that the output method is “text”, the specified encoding “ASCII” and the media-type
“text/plain” as we intend to generate a plain text list of classes and interfaces.

The main template part contains <xsl:for-each> loops in order to process each class and
interface within the XML Documentation. It then outputs a namespace “./@ns” with a dot “.”
following if the namespace is not empty (would be the “root package” in that case so no “.”
required) and finally outputs the identifier of the class or interface and a “linefeed” character
defined with “
”.

4. The style is ready for use. Start AS2Doc now. If you have made any mistakes you should get
an error report on the log page immediately, otherwise you can now find your style listed on the
“output” page.

5. Select a source and a target output directory and test your style.

There are many possible scenarios you can solve and output formats you can create by creating
custom styles.

See the bundled default styles for more examples.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 30

6.2 Standard HTML Style
The standard HTML Style generates a documentation intended for Web-usage and contains a
framed view based on the popular “JavaDoc ™” HTML documentation standard.

6.2.1 Introduction
If you use any files referenced within your doc comments put them in a subdirectory named
“doc_files” in the package directory of the documented class.

Example image link:
/**
 * @description A picture:

 *
 */

If this comment would be used within a class “de.mirell.m3d.CObject”, you would have to put the
picture into the “de\mirell\m3d\CObject\doc_files\” directory within your source tree.

The output style automatically copies the contents of the “doc_files” directory thus leading to the
picture appearing in the final HTML documentation correctly referenced.

This should work with any media files you use. (Flash, Images, further HTML, PDF etc.)

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 31

Generated File Structure:

index.html Initial page that sets up HTML frames (if noframes is true, title page)
packages-summary.html Lists all packages
packages-tree.html Lists class hierarchy for all packages
packages-frame.html Lists all packages, used in upper-left frame
allclasses-frame.html Lists all classes for all packages, used in lower-left frame
help-doc.html Lists user help for how these pages are organized
index-all.html Default index for the documentation
as2doc.css CSS Stylesheet for pages (overwritten with file from css parameter)
as2doc.png The AS2Doc logo for the footer (overridden by footer parameter)
some
 package
 AClass.html Page for AClass class
 AIntf.html Page for AIntf interface
 package-summary.html Lists classes with short description summaries for this package
 package-frame.html Lists classes in this package, used in lower left-hand frame
 package-tree.html Lists class hierarchy for this package
 doc-files Directory holding image and example files

6.2.2 Configuration
The Output Style offers the following options for configuration which can be accessed either using
the GUI style configuration dialog or the –s:<name> <parameter> command line parameters:

noframes Omits generation of the “*-frame.html” files and removes frame navigation overall
notree Omits all class hierarchy pages in the final documentation
nohelp Omits generation of the help page
noindex Omits generation of the index page
nonav Omits generation of the top navigation
footer Define your custom footer to be displayed at the bottom of each page
css The full filename to a valid CSS file to be used instead of the default one

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 32

6.3 Flash MX 2004 Style
The Flash MX 2004 Output Style generates Flash IDE standard documentation files assembling
the existing look and feel of original documentation included in Flash as close as possible to
integrate perfectly into the concept of Flash Help.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 33

6.3.1 Introduction
Generated File Structure:

myproject.mxi MXI Template - contains all files generated in <files> node
ActionsPanel
 CustomActions
 myproject.xml CustomActions XML file named after your project title
HelpPanel
 Help
 help_search_index.xml Search index for internal Flash IDE search
 help_toc.xml Table of Contents XML for the Flash IDE Help Navigation
 help_index.html Frameset showing an index
 help_index_main.html Bottom-frame index for the documentation
 help_index_nav.html Top-frame letter navigation for the index frameset
 overview.html Lists all packages
 introduction.html Contains the main title page with the project description
 id#####.html Random filenames representing class and member pages

6.3.2 Configuration
The Output Style offers the following options for configuration which can be accessed either using
the GUI style configuration dialog or the –s:<name> <parameter> command line parameters:

nomxi Omit generation of the .mxi template file
nocustomactions Omit generation of the CustomActions file
nohelp Omit generation of the HelpPanel files
nosource Omit automated addition of file tags within the .mxi template for classes
helpfooter Define a custom footer for the HelpPanel Help
mxi.title The title to appear in the .mxi template (Omit for project title to be added)
mxi.version The mxi release version
mxi.type The mxi type, default is “Flash Component” (Check MXI Reference)
mxi.author The author of the mxi package
mxi.description Description of the mxi package (Omit for project description to be added)
mxi.ui-access Description of how to access contents of the distribution

6.3.3 CustomActions
The target directory will contain an XML file in “ActionsPanel\CustomActions” which represents
the CustomActions within the Flash IDE. The file is used to display a folder reference of all
classes which can be clicked on to add constructs to the code editor, support for colored syntax
highlighting, codehints to show parameter structure of methods and correct syntax within the
IDE.

6.3.4 HelpPanel Documentation
HelpPanel Documentation is the newest addition in the IDE Help, it adds a folder browseable
context-sensitive help partly based on HTML. It is the current standard of help generated for
Flash based components and projects.

The output style automatically generates “usage” information for all elements without @usage
tags.

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 34

6.3.5 MXI Template
Macromedia Products support the installation of extensions using a tool called Extension Manager.
The distribution of extensions for Flash is made of MXP files which combined with the Extension
Manager easily (un)install extensions.

Since these extensions can contain CustomActions, HelpPanel Documentation and ActionScript
classes and more, a MXI description file (based on XML) is used by the Extension Manager to
compile distributable MXP archives for users.

To ease adding the generated HelpPanel HTML files, which consist of random characters, to a
MXI description for compiling a MXP archive, the style also generates the appropriate MXI file
containing all files generated. You can also enable to generate appropriate XML nodes for the
documented source code files. This would enable you to instantly compile a MXP distribution
containing your ActionScript classes with full documentation for the Flash IDE and all its features!

Please mind that due to the specifications the MXI format specifies filenames to have a maximum
length of 30 characters. We have seen classes with longer filenames, which still work within your
Flash IDE but would not compile to a MXP archive and cause an error. The style therefore
automatically uncomments appropriate <file> nodes if any files exceed 30 characters within
your source file list.

You can find more information about the Extension Manager here:
http://www.macromedia.com/exchange/em_download/

The reference for the MXI format can be downloaded here:
http://www.macromedia.com/go/em_file_format/

Copyright 2004 © Mirell Development. All rights reserved.

http://www.macromedia.com/exchange/em_download/
http://www.macromedia.com/go/em_file_format/

AS2Doc 6. AS2Doc Styles 35

6.4 RTF Style
The RTF style generates a document according to the Rich-Text-Format 1.8 Specifications of
Microsoft® targeted for printing. It can further be used in editors able to read RTF files and
customized. Various features are used including formatting styles which enable easy change of
the look and feel of the document, dynamic page numbering and referencing, document
hyperlinks, dynamic table of contents and more.

Classes and Interfaces are not just linked for browsing within the document but essentially
provide page references for the reader of a printed version.

The RTF style uses features available in the Microsoft® Word Software like “Fields”, once opened
you will have to press CTRL+A (Select all) followed by F9 (Update Fields) when the document
has loaded completely.

6.4.1 Introduction
Generated File Structure:

myproject.rtf The RTF document named after the project title

Internal File Structure:

Title Page A title page containing the author, organization and project title
Table of Contents A dynamicly created table of contents for the documentation
Introduction A page with the project description

Package Overview Lists all classes within a package

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 6. AS2Doc Styles 36

Class Page Class detail page with member summary
Member Page Member detail page

The last three pages are generated repeatedly depending on the amount of packages, classes
and members of the class.

6.4.2 Configuration
The Output Style offers the following options for configuration which can be accessed either using
the GUI style configuration dialog or the –s:<name> <parameter> command line parameters:

author Author of the document (appears in the document summary and title page)
organization Company/Organization (appears in the document summary and title page)
titletext A custom text that appears on the title page
notitle Omits generation of the title page
notoc Omits generation of the table of contents pages
nointro Omits generation of the introduction chapter containing the description
nopackage Omits generation of package summary pages listing all classes within package
nosummary Omits generation of member summary sections on class pages

Copyright 2004 © Mirell Development. All rights reserved.

AS2Doc 7. Appendix 37

7. Appendix
The appendix contains the Frequently Asked Questions (FAQ) and common troubleshooting
information.

7.1 Frequently Asked Questions (FAQ)
What is AS2Doc?
AS2Doc is a documentation generator. It reads your ActionScript 2 based sourcecode and
analyzes your comments and code. Information gathered from that process is then used to
output a detailed and powerful documentation for your code.

Can I use AS2Doc with parameters from the command-line?
Yes. You can even supply a saved project information file so there is no need to add more
options. Open AS2Doc once to open the user interface, configure your project settings, save
them and use: "as2doc.exe myproject.xml to let AS2Doc generate the documentation on your
settings automaticly.

Can I create my own documentation styles?
Simply, yes. Alongside with the standard styles we also provide you with a "template XSL style"
which you can use to build your own style.
Look inside the subdirectory "styles" in your AS2Doc installation directory. The file to start with is
called "styles.xsl" and is well-documented.

Also check out our Styles Section at http://www.as2doc.com/styles/ for new styles to download!

Why can I only select one class file (no classpath)?
This is a limitation of the trial edition. The full version enables you to select a classpath or single
class to be used for generation. Using the GUI, you can configure which classes should be
generated in the final output.

When I open the RTF Documentation “!UPDATE!” appears all over the document?
Due to a limitation of the RTF Format, fields are not automatically updated when the document is
opened. In order to update fields in Word, use CTRL+A (Select all) followed by F9 (Update Fields).

Does AS2Doc support Chinese or Japanese characters?
Yes, AS2Doc supports all characters available for the input encoding UTF-8 as used for Flash
ActionScript sources. The output styles have special processing built-in to enable encoding
support within the output formats.

The class comments are missing from the generated docs, but are in the source code. I
only get the doc comments for the methods, fields and constructors.
If the class-level doc comments are missing, a common mistake is putting the import statement
between the doc comment and the class definition in the source file. There must not be any
statements between the class doc comment and the class declaration.

 /**
 * This is the class comment for the class Whatever.
 */

 import de.mirell.*; // MISTAKE - Important not to put statements here

 public class Whatever {
 }

Copyright 2004 © Mirell Development. All rights reserved.

http://www.as2doc.com/styles/

AS2Doc 7. Appendix 38

Where can I find the latest version of this documentation?
On the AS2Doc website at http://www.as2doc.com in the support section.

7.2 Program Warnings
“Output directory does not exists. Attempting to create.”
If the target directory or any subdirectories you specified do not exist, AS2Doc attempts to
create these.

“No styles found in /styles/”
On startup, AS2Doc seeks for any styles within the “styles” subdirectory. Make sure you have the
as2doc.exe within the correct installation folder and your bundled styles in the folder of the
executable.

“No class/interface definition found in FILE.as!”
While searching for classes, AS2Doc recursively looks for .as files within each directory. It will try
to open and parse a valid ActionScript 2.0 class from the file. Since .as files also contain
ActionScript 1.0 source code or other data, it reports this warning. If the file reported IS a valid
ActionScript 2.0 file you should check it for any syntactical errors.

“No <information> tag found in XSL Stylesheet.”
Each output style AS2Doc recognizes upon startup has to contain an <information> tag. Missing
tag leads to not displaying the style within the GUI. If this error is reported for a custom style
you created, make sure to check your “style.xsl” file for problems.

“Skipping unknown parameter module: NAME”
This warning appear if your custom style has specified a <parameter> node with a “module”
attribute value that is not one of the list. (See 6.1.1 Style Reference)

“A <file/> pipeline node missing instruction attributes (style or source) was
encountered.”
A valid <file> node has to either have a “style” or “source” attribute as defined by the reference
within your “style.xsl” file.
(See 6.1.1 Style Reference)

“A stylesheet <param/> tag was missing the "name" attribute.”
A <file> node within the “style.xsl” pipeline file of an output style contains a <param> tag
without the “name” attribute.
(See 6.1.1 Style Reference)

“Style not found at FILENAME”
Displayed if you supply a custom style filename for generation which is not found by AS2Doc.
The default HTML style is used instead.

7.4 Program Error Messages
“No class/interface was selected for generation.”
You should check if you have selected any classes on the “source” page. You select elements
using the checkbox or the right-click popup menu.

“Error loading XML Project document.”

Copyright 2004 © Mirell Development. All rights reserved.

http://www.as2doc.com/

AS2Doc 7. Appendix 39

The error occurs if loading of a project file fails. This can have various reasons, most likely due to
manually edited XML mistakes. The error should contain further information to solve and locate
the problem and most likely line and column number.

“Error loading XSL Stylesheet document.”
A problem occurred during the loading of an XSL Stylesheet. The error should contain further
information to solve and locate the problem and most likely line and column number.

“Error loading XSL Stylesheet Information from project file.”
A problem occurred during the reading the <information> node of an output style “style.xsl” file.
The error should contain further information to solve and locate the problem and most likely line
and column number.

“Error loading source XML document. *** Contact Mirell Development ***”
If this error occurs AS2Doc has generated XML documentation which is not valid XML.
This error can only appear in special cases and is mostly caused by wrong/irregular doc
commenting. Please contact support@as2doc.com and send us a saved copy of your project’s
XML file or the raw XML Documentation.

“Error loading XSL Generation Pipeline Stylesheet document.”
AS2Doc could not read the “style.xsl” file due to errors in it. The error should contain further
information to solve and locate the problem and most likely line and column number.

“Error transforming XSL Generation Pipeline.”
AS2Doc could not generate the initial generation pipeline using the source XML Documentation
and an output style’s “style.xsl” file. The error should contain further information to solve and
locate the problem and most likely line and column number.

“Error in generated Pipeline XML document.”
AS2Doc encountered a problem within the XML file resulting from the transformation of the XML
Documentation and an output style’s “style.xsl” file. The error should contain further information
to solve and locate the problem and most likely line and column number.

“Error in included XSL Stylesheet.”
A problem was located within a XSL Stylesheet provided by the current output style. The error
should contain further information to solve and locate the problem and most likely line and
column number.

“Error transforming XSL.”
This error is displayed if AS2Doc is unable to transform a result document using a style specified
within the attribute tag “style” of a <file> node. The error should contain further information to
solve and locate the problem and most likely line and column number.

Copyright 2004 © Mirell Development. All rights reserved.

mailto:support@as2doc.com

AS2Doc 8. Annotations 40

8. Annotations

Copyright 2004 © Mirell Development. All rights reserved.

	1. Installation
	1.1 General Installation
	1.2 Product Registration
	1.3 System Requirements

	2. Getting Started
	2.1 Introduction
	2.2 How AS2Doc works
	2.3 A simple tutorial

	3. User Interface
	3.1 Project Settings
	3.2 Source Settings
	3.3 Output Settings
	3.4 Options
	3.5 Log View
	3.6 About, View, Generate and Exit Buttons

	4. Command Line
	4.1 Arguments
	4.2 Examples

	5. Documentation Comments
	5.1 Commenting the Source Code (AS2Doc Additions)
	5.1.2 Description HTML Subset

	5.2 AS2Doc Tag Reference
	5.2.1 Block Tags
	5.2.2 Inline Tags

	5.3 Example

	6. AS2Doc Styles
	6.1 Creating custom Output Styles
	6.1.1 Style Reference
	6.1.2 A simple style tutorial

	6.2 Standard HTML Style
	6.2.1 Introduction
	6.2.2 Configuration

	6.3 Flash MX 2004 Style
	6.3.1 Introduction
	6.3.2 Configuration
	6.3.3 CustomActions
	6.3.4 HelpPanel Documentation
	6.3.5 MXI Template

	6.4 RTF Style
	6.4.1 Introduction
	6.4.2 Configuration

	7. Appendix
	7.1 Frequently Asked Questions (FAQ)
	7.2 Program Warnings
	7.4 Program Error Messages

	8. Annotations

